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AnEcmqaa_OcHoBllsarrcbKaTeopwKnyTIlnepeNemKsaKKrrIIparr~Srsrr,y~mocb 06061qrm 
06~~bIff norapn@NwsecKwR npo@inb cKopocTett Ha cnysafi TegeHm cxuiwaemoro raaa. 
OBoBIqeHHnft npo@inb aa~~c~~~~p~~anapaNe~OB,KOTOp~eonpe~en~~oTcany~eNpeure~~rr 
aaMKEyTO# CNCTeNY 06bIKHOBeHHbIX KBaEWlIKHeiHLJX ~K~peHIJHaJIbEibIX ypaBHeHH$i 

nepBor0 nopBAKa. 
Ha npKnaepe noKaaaKa ge$opmfamB II~OI@IH c~opoc~efi no mepe pocTa YKcna Maxa. 

YCT~OBJIeHO,WOIIp&iWOIN KOE+@i~eHTTpeHWRB08paCTaeT. 

G, 
h, 
K 
K 

l-3 
p, 

pr, 
R 
Re, 
u, 
V, 

W, 

V, 
X, 

X, 
YY 

pressure ; 

NOMENCLATURE 

stagnation pressure ; 
Prandtl number ; 

velocity profile parameter, 

gas constant ; 

Reynolds number ; 
longitudinal velocity component ; 
transversal velocity component ; 

_L = - (ll5m~l~Y), ; 

mean mass velocity ; 

limit velocity, V = ,/(RO/R); 

longitudinal coordinate ; 

gas mass flow rate ; 

calibrated longitudinal coordinate; 
transversal coordinate. 

half-width of a plane-parallel channel ; 
isentropic exponent ; 
dimensionless factor, 

R = (K - 1/2K); 

2 

z, 

starting channel section ; 

0: 

shear stress ; 

viscous sublayer boundary ; 

0, 

channel wall ; 

1, 

stagnation temperature ; 

channel axis. 

0, degree of velocity profile occupancy, 
0 = (w/q); 

[, friction factor, 

V, kinematic viscosity. 

Subscripts 

CONSIDER a steady-state adiabatic gas flow in 
a plane-parallel channel 2h wide. It is supposed 
that in the starting section of the channel the 
flow is developed (i.e. opposite boundary layers 
have already closed up), the velocity in the 
centre of the channel in this section is subsonic. 
Everywhere through the channel 

Greek symbols 

4 viscous sublayer thickness ; 

-5 turbulent viscosity coefficient ; 

PL, dynamic viscosity ; 

Pt density ; 

Introduce dimensionless values assuming 

x = ?hRe, y = Jh, u = iiv, v = vv 
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P = Ppli, 

- pli 

Y=Pz O=l 

P = PPL;i, E = &&, Z = Z~;i (V~h) 

where ,u’ is viscosity-determined at stagnation 
temperature 

VhP,, 
j&J = ~ 

p’;iRtl’ 

On omitting the bars over the dimensionless 
values, we get the set of boundary-layer equa- 
tions 

= _&+’ 
dx c?y’ 

(1) 

(2) 

whence for velocities in a turbulent kernel we 
obtain 

(10) 

d 

Velocity distribution in a viscous sublayer 
can be found on taking into account that 
according to equation (1) (aziay), = Rp’ and 
near the wall therefore 

z = zo + Rp’y. (11) 

To this the following distribution corresponds 

l4 = z,y + gp’y”. (12) 

Present the value ,/(z/p) from equation (11) in 
the form of 

JWP) = co + CIY + C2Y2 + GJU - Y). 

p = p(1 - u2). (4) 
The coefficients Ci 
following conditions 

From these equations it is not difficult to 
obtain integral equations 

z 
I(.\ - 

ipudy = +G (5) 

& yU2dy+K$+ro=0. 
s 

(6) 

0 

Assuming in equation (1) y = 1, we get the 
relation on the channel axis 

(7) 

where 

1 dp 
P =& jr= _’ 2 0 20 dy ,’ (8) 

To find the velocity profile, use one of the 
known expressions for z. The Prandtl expression 
is the most convenient 

(13) 

can be found from the 

jl \P/ v=o 
= c, + c,, 

z J(> P s=1 
= co + c, + c,. 

Simple treatments lead to the following ex- 
pressions* 

co = J( > ; (1 - cr), 

Cl =i &)(~+u) 
c, = 3 J( 

- I 
zo - Kp 
7 > ( -2+-a, 

70 1 

c3 = TO J( > -U 

P 

where 

cJ = JCLU - t&l. 

2 

* The equality t = (I - y)fr *,, is taken into account near 
4’= I. 
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In case of low velocities when a gas flow The right-hand side of equation (14) has 6 
slightly differs from an incompressible liquid unknown values ur, u6, p, ‘to, S,f,. To determine 
flow we have (du,jdx) % 0, these unknowns we have 6 equations : 

1 

& s pu*dy w 0 

0 

and from equations (7) and (8) obtain 

- (Kp’jz,) !z 1, f* z 1. 

Besides, u: z 0. At low velocities therefore 
C 0 z c, x cz w 0, c, = &o/~), p = P and 
approximation (13) gives 

&P) = &oiP) JCl - Y), 

i.e. it leads to nearly linear distribution z 
typical for the case of incompressible flow. 

By substituting equation (13) into (10) it is 
not difficult to find the velocity profile in a 
turbulent kernel if the relation I versus y is 
known. Let us find such a profile which at small 
velocities reduces to the known logarithmic one. 
To this end at sufficiently small y it should be 
supposed that J( 1 - y) = 1 in equation (13) 
and 1 = xy = 0.4 y in (10) and the obtained 
profile should be extended to all values of y 
from 6 to 1. 

Substituting equation (13) into (10) and 
assuming I = 0.4 y, we obtain 

2.5 
u = a6 + JRc J(~,iP) [J/(X, Y) - w @I (14) 

where 

+(x9 Y) = In Y + 4~ + 3a2y 
2. 

, 

a, =:($+g, a,=$ (-E$-2+3. 

For incompressible liquid a, = a, = 0, and 
the profile (14) will be an ordinary logarithmic 
one. The profile (14) differs from the incompres- 
sible one by the parameter -(Kp’,h,) and 0 
which describe the effect of velocity and its 
gradient. Each of the above parameters in the 
case of incompressible flow is equal to unity. 

(a) equation (14) written for the axis of the 
channel 

2.5 

‘i = ” + JRe - 4) 
$! WW) - w,m 

(b) equation of the rate conservation (5); 
(c) momentum equation (6); 
(d) relation on the axis (7); 
(e) condition of the coincidence between the 
profile (14) with that in a viscous sublayer (12) at 
y=6; 
(fj condition of viscous sublayer stability [I] 

JRes 2 = 11.6. 
V6 J( > d 

This set of equations can practically be 
easily solved when reduced to the set of ordinary 
quasi-linear differential equations. If in the 
starting section of the channel the velocity 
u1 is sufficiently small, one can consider that 
the developed flow is determined by the rela- 
tions typical for incompressible liquid flow. This 
allows the initial conditions to be found. 
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FIG. 1. The velocity on the axis, pressure gradient, degree of 
profile occupancy, parameter f, and friction factor versus 

the current length of the channel X. 
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u 

FIG. 2. Velocity profile deformation near the wall. The boundary 
of the sublayer is shown by circles. 

Some calculational results are shown in 
Figs. 1 and 2. As seen from Fig. 1 the velocity u1 
and pressure gradient \p’( increase more in- 
tensely with the increase of the current length X. 

The degree of the profile occupancy w does 
not practically change, and the friction factor 
i = (16T,/i?eGw) increases. 

The increase of < is determined by essential 
deformation of the velocity profile near the wall 
(Fig. 2); the thickness of the viscous sublayer 
diminishes with simultaneous increase of the 
velocity on its bo,undary. This leads to such an 
increase of q, which effects [ more pronouncedly 
than the increase of the mean mass velocity w 
does. 

Note, that the above method can be applied 
not only for z given in the form of (9). One could, 
for example, avail oneself of z from [2]. It 
does not however change the main point. 
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Abstract-On the basis of the Prandtl theory of mixing length the ordinary logarithmic velocity profile 
was generalized to apply to the case of a compressible gas flow. The generalized profile depends on a 
number of parameters which are determined by the solution to a closed set of ordinary quasi-linear dif- 
ferential equations of the first order. 

The velocity profile deformation with increase of the Mach number is illustrated by way of an example. 
It is found that in this case the friction factor increases. 

R6swn&--On a gCnbalisC le protil de vitesse logarithmique habitue1 sur la base de la thtorie de la longueur 
de melange de Prandtl pour l’appliquer au cas dhn Ccoulement de gaz compressible. Le profil gCnCra1is.C 
depend de certains parametres qui sont d&ermines par la solution d’un systbme fermC d%quations dif- 
fkrentielles quasi-lin&aires du premier ordre. 

La deformation du profil de vitesse, lorsque le nombre de Mach augmente est illust& au moyen d’un 
exemple. On trouve que dans ce cas le coefficient de frottement augmente. 
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Z~nssmg-Auf Grund der Prandtl’schen Theorie des Mischungswegs wurde das gewijhnliche 
logarithmische Geschwindigkeitsprofiil verallgemeinert zur Anwendung auf kompressible Gasstromung. 
Das verallgemeinerte Profil hangt von einer Reihe von Parametern ab, die bestimmt wurden durch die 
Losung einer Gruppe gewbhnlicher quasilinearer Differentialgieichungen erster Ordnung. 

Die Deformation des Geschwindigkeitsprofils mit zunehmender Machzahl ist mit Hilfe eines Beispiels 
gezeigt. Dabei wird die Erhijhung des Reibungsfaktors gefunden. 


